اساس هارمونيك ها:
اصولاً هارمونيك ها آلوده سازي شكل موج را در اشكال سينوسي آنها نشان مي دهند. ولي فقط در مضارب فركانس اصلي تخريب شكل موج را مي توان در فركانس هاي مختلف (مضارب فركانس اصلي) بعنوان يك نوسان دوره اي بوسيله آناليز فوريه تجزيه و تحليل كرد.
در حال حاضر هارمونيكهاي فرد و زوج و مرتبه 3 در اندازه هاي مختلف ضرايب فركانس هاي مختلف در سامانه هاي الكتريكي موجودند كه مستقيما تجهيزات سامانه الكتريكي را متاثر مي سازند. در معنايي وسيع تر هارمونيك هاي زوج و مرتبه 3 هر يك تلاش مي كنند كه ديگري را خنثي نمايند.
ولي در مدت زماني كه بار نامتعادل است اين هارمونيك هاي زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژي شديد مي شوند. با تمام احوال هارمونيك هاي فرد اول مانند هارمونيك پنجم، هفتم، يازدهم، سيزدهم و... عملكرد اين تجهيزات الكتريكي را تحت تاثير قرار مي دهند.
هارمونيك هاي ولتاژ و جريان تاثيرات متفاوتي بر تجهيزات الكتريكي دارند. ولي عموماً بيشتر تجهيزات الكتريكي به هارمونيك هاي ولتاژ بسيار حساس اند. تجهيزات اصلي نيرو مانند موتورها، خازن ها و غيره بوسيله هارمونيك هاي ولتاژ متاثر مي شوند.
به طور عمده هارمونيك هاي جريان موجب تداخل مغناطيسي (Magnetic Interfrence) و همچنين موجب افزايش اتلاف در شبكه هاي توزيع مي شوند. هارمونيكهاي جريان وابسته به بار اند، در حالي كه سطح هارمونيك هاي ولتاژ به پايداري سامانه تغذيه و هارمونيك هاي بار (هارمونيكهاي جريان) بستگي دارد. عموما هارمونيك هاي ولتاژ از هارمونيك هاي جريان كمتر خواهند بود.
تشديد:
اساسا تشديد سلفي – خازني در همه انواع بارها مشاهده مي شود. ولي اگر هارمونيك ها در شبكه توضيع شايع نباشند تاثير تشديد فرونشانده مي شود. در هر تركيب سلفي – خازني چه در حالت سري و چه در حالت موازي، در فركانسي خاص تشديد رخ مي دهد كه اين فركانس خاص فركانس تشديد ناميده مي شود. فركانس تشديد فركانسي است كه در آن رآكتنس خازني (Xc) و رآكتنس القايي (XL) برابر هستند.
براي تركيبي مثالي براي بار صنعتي كه شامل اندوكتانس بار و يا رآكتنس ترانسفورماتور كه بعنوان XL عمل مي كند و رآكتنس خازن تصحيح ضريب توان كه به صورت Xc خودنمايي مي كند فركانس تشديدي برابر با LC خواهيم داشت.
رآكتنس خازني متناسب با فركانس كاهش مي يابد (توجه: Xc با فركانس نسبت عكس دارد). در حالي كه رآكتنس القايي متناسب با آن افزايش مي يابد (توجه: XL با فركانس نسبت مستقيم دارد). اين فركانس تشديد به سبب متغير بودن الگوي بار متغير خواهد بود. اين مساله براي ظرفيت خازني ثابت كل براي اصلاح ضريب توان پيچيده تر است. براي درك صحيح اين پديده لازم است دو نوع وضعيت تشديد شامل حالت تشديد سري و حالت تشديد موازي مورد توجه قرار گيرند. اين دو امكان در زير توضيح داده مي شوند.
تشديد سري:
يك تركيب سري رآكتنس سلفي – خازني، مدار تشديد سري شكل مي دهد كه در شكل زير نشان داده شده است.
به خاطر تركيب سري سلف و خازن، در فركانس تشديد امپدانس كل به پايين ترين سطح كاهش مي يابد و اين امپدانس در فركانس تشديد طبيعتي مقاومتي دارد. بنابراين در فركانس تشديد رآكتنس خازني و رآكتنس سلفي (القايي) برابر هستند.
اين امپدانس پايين براي توان ورودي در فركانس تشديد، افزايش تواني جريان را نتيجه مي دهد. شكل داده شده زير رفتار امپدانس خالص در وضعيت تشديد سري را نشان مي دهد.
در كاربري صنعتي رآكتنس ترانسفورماتور قدرت به علاوه خازنهاي اصلاح ضريب توان در سمت ولتاژ پايين به عنوان يك مدار تشديد موازي براي سمت ولتاژ بالاي ترانسفورماتور عمل مي كند. اگر اين فركانس تشديد تركيب سلف و خازن بر فركانس هارمونيك شايع در صنعت منطبق شود، بخاطر بستري با امپدانس پايين ارائه شده توسط خازن ها براي هارمونيك ها، منجر به افزايش تواني جريان خازن ها خواهد شد. از اين رو خازن هاي ولتاژ پايين در سطحي بسيار بالا اضافه بار پيدا خواهند كرد كه همچنين اين عمل موجب تحميل بار اضافي بر ترانسفورماتور مي شود. اين پديده منجر به تخريب ولتاژ در شبكه ولتاژ پايين مي شود.
تشديد موازي:
يك تشديد موازي تركيبي از رآكتنس خازني و القايي است كه در شكل زير نمايش داده شده است، در اينجا رفتار امپدانس برعكس حالت تشديد موازي خواهد بود كه در شكل داده شده در زير، نشان داده شده است. در فركانس تشديد امپدانس منتجه مدار به مقداري بالا افزايش مي يابد.
اين منجر به بوجود آمدن مدار تشديد موازي ميان خازن هاي اصلاح ضريب توان و اندوكتانس بار مي شود كه نتيجه آن عبور ولتاژ بسيار بالا هم اندازه امپدانس ها و جريان هاي گردابي بسيار بالا درون حلقه خواهد بود.
در كاربري صنعتي خازن اصلاح ضريب توان مدار تشديد موازي با اندوكتانس بار تشكيل مي دهد. هارمونيك هاي توليد شده از سمت بار رآكتنس شبكه را افزايش مي دهند. كه موجب بلوكه شدن هارمونيك هاي سمت تغذيه مي شود. اين منجر به تشديد موازي اندوكتانس بار و اندوكتانس خازني مي شود.
مدار LC (سلفي – خازني) موازي، شروع به تشديد ميان آنها مي كند كه منجر به ولتاژ بسيار بالا و جريان گردابي بسيار بالا در درون حلقه مدار سلف – خازن (LC) مي شود. نتيجه اين امر آسيب به تمام سمت ولتاژ پايين سامانه الكتريكي است.
ايزوله كردن تشديد موازي از ايزولاسيون تشديد سري نسبتا پيچيده تر است. اساسا اين امر بخاطر تنوع بار صنعتي از زماني به زمان ديگر است كه موجب تغيير فركانس تشديد مي شود. شكل زير تاثير ظرفيت خازني ثابت و اندوكتانس متغير را نشان مي دهد.
اين تغيير مداوم فركانس تشديد ممكن است موجب تطبيق فركانس تشديد بر فركانس هارمونيك شود كه ممكن است منتج به ولتاژ بالا و جريان بالا كه سبب نقص و خرابي تجهيزات الكتريكي مي شوند، گردد.
بنابراين در هر دو تشديد موازي و سري خازن هاي قدرت متاثر هستند كه بكار گيري دستگاه هاي حفاظتي و ايمني را براي خازن ها ايجاب مي نمايد. اين امر درك صحيح بر خازن هاي قدرت را قبل از اعمال تصحيح بخاطر تاثير هارمونيك ها و تشديد ايجاب مي نمايد.
خازنهاي قدرت:
خازنهاي اصلاح ضريب توان نسبت به هارمونيك ها حساس اند و بيشتر عيوب خازنهاي قدرت، عيوبي با طبيعت زير را نشان مي دهند:
· هارمونيك ها – هارمونيك هاي پنجم، هفتم، يازدهم، سيزدهم و...
· تشديد
· اضافه ولتاژ
· امواج كليد زني
· جريان هجومي
· ولتاژ آني بازگيري جرقه
· تخليه / باز بست ولتاژ
بسته به طراحي ساختاري اساسي، حدود پايداري در مقابل اضافه ولتاژ، اضافه جريان و هارمونيك ها براي دور كردن خازن از خرابي بسيار مهم است. اساسا خازن ها امواج كليد زني توليد مي كنند كه عموما به عنوان جريان هجومي و اضافه ولتاژ آني دسته بندي مي شوند.
بنابراين در هر دو تشديد موازي و سري خازنهاي قدرت متاثر هستند كه بكار گيري دستگاه هاي حفاظتي و ايمني را براي خازنها ايجاب مي نمايد. اين امر درك صحيح بر خازنهاي قدرت را قبل از اعمال تصحيح بخاطر تاثير هارمونيك ها و تشديد ايجاب مي نمايد.
جريان هجومي پديده اي است كه هنگام به مدار وصل كردن خازن ها رخ مي دهد. امپدانس ارائه شده توسط خازن طبيعتا بسيار كم و مقاومتي است. اين امر منجر به جريان هجومي به بزرگي 50 تا 100 برابر جريان اسمي مي شود كه از خازن عبور مي كند، اما چرا از خازن؟ زيرا امپدانس ترانسفورماتور در زمان روشن كردن خازن ها فقط در مقابل شار جريان مقاومت مي كند.
اين امر هنگامي پيچيده تر مي گردد كه در تركيب موازي بانك خازني ممكن است جريان هجومي كليد زني به سطحي بالاتر از 200 تا 300 برابر جريان اسمي برسد. اين جريان هجومي نتيجه تخليه خازن هاي از پيش شارژ شده موازي با آن مي باشد. در زير اين مطلب نشان داده شده است. نوعا جريان هجومي علاوه بر تخريب در شكل موج جريان سبب تخريب در شكل موج ولتاژ مي شود.
در هنگام خاموش كردن (از مدار خارج كردن) خازن ها، بسته به شارژ ذخيره شده در آن، اضافه ولتاژ ناگهاني بالاتري در زمان خاموش كردن خازن ها بوجود خواهد آمد كه ممكن است موجب پديد آمدن جرقه در پايه ها شود.
هنگامي كه خازن خاموش مي شود شار الكتريكي در خود نگه مي دارد و بوسيله مقاومت هاي تخليه، تخليه (Discharge) مي شود. مدت زمان تخليه عموما بين 30 تا 60 ثانيه مي باشد. تا زماني كه تخليه به شكل موثري صورت نگرفته نمي توان خازن ها را به مدار باز گرداند. هرگونه باز بست خازن قبل از تخليه كامل دوباره موجب افزايش جريان هجومي مي شود.
علاوه بر دستگاه هاي مسدود كننده هارمونيك ها كه با صحت خازن ها نسبت مستقيم دارند، و در سر خط بعدي تشريح مي شوند، دستگاه هاي تحليل برنده امواج كليد زني مثل جريان هجومي، اضافه ولتاژ آني و غيره نياز دارند كه بطور دقيق تعريف و بررسي شوند.
دستگاه هاي مسدود كننده هارمونيك ها:
براي كاربري سالم خازن ها لازم است كه فركانس تشديد مدار LC (سلف – خازن) كه شامل ادوكتانس بار و خازنهاي اصلاح ضريب توان مي شود، به فركانسي دور از كمترين فركانس هارمونيك تغيير داده شود.
براي مثال هارمونيك هايي كه در سامانه توليد مي شوند و خازنهاي قدرت را متاثر مي سازند، هارمونيك هاي پنجم، هفتم، يازدهم، سيزدهم و غيره هستند. پايين ترين هارمونيكي كه بر خازن ها تاثير مي گذارد هارمونيك پنجم است كه در فركانس 250 هرتز ديده مي شود.
اساسا اگر خازن ها با سلف ها موازي شده باشند ، انتخاب مقدار اندوكتانس به شكل زير است:
تركيب سري LC (سلف – خازن) در فركانسي زير 250 هرتز تشديد مي كند. بنابراين در همه فركانس هاي هارمونيك ها تركيب سري سلف و خازن مانند يك تركيب سلفي عمل خواهد كرد و امكان تشديد براي هارمونيك پنجم يا هر هارمونيك بالاتري از بين مي رود. شكل زير ناميزان سازي (De – Tuning) خازن ها را نشان مي دهد.
اين تركيب سلف و خازن كه در آن فركانس تشديد در فركانسي دور از فركانس هارمونيك تنظيم شده است، مدار LC (سلف – خازن) ناميزان شده (De-Tuned) نام دارد. ضريب ناميزان سازي نسبت رآكتنس به طرفيت خازني است. در مدار خازني ناميزان شده، اساسا سلف مانند دستگاه مسدود كننده هارمونيك ها عمل مي كند. براي خازن ها ضريب مناسب ناميزان سازي حدود %7 است كه فركانس تشديد را در 189 هرتز تنظيم مي كند.
اما ناميزان سازي %5.67 همچنين در جايي استفاده مي شود كه فركانس تشديدي معادل 210 هرتز دارد. هر دو درجه ناميزان سازي، مسدود كردن (بلوكه كردن) هارمونيك ها از خازن ها را تضمين مي كنند. شكل زير درجه ناميزان سازي را نمايش مي دهد.
بانك هاي ناميزان سازي خازن:
بانك هاي ناميزان سازي خازن نيازمند آن هستند كه با نكات اساسي زير مشخص شوند:
· انتخاب درجه ناميزان سازي
· محاسبه خازن كل خروجي مورد نياز
· محاسبه افزايش ولتاژ بوسيله سلف هاي سري
· درجه ناميزان سازي مطلوب بر پايه هارمونيك موجود است. لازم است كه هارمونيك هاي سمت بار اندازه گيري شوند تا در درجه ناميزان تصميم گيري شود.
خروجي خازن و سطح ولتاژ نياز به انتخاب صحيح بر اساس درجه ناميزان سازي دارند. براي مثال براي %7 ناميزان سازي براي رسيدن به 200 كيلو ولت آمپر رآكتيو خروجي (KVAR) در 400 ولت، نياز به آن داريم كه خازن 240 KVAR خروجي با ولتاژ 400 ولت انتخاب نماييم. اين بدليل افزايش ولتاژ بوسيله اندوكتانس سري است. مشابها براي رسيدن به 200 KVAR خروجي در ولتاژ 440 ولت به خازن هاي 240 KVAR خروجي 480 ولتي نياز است.
محاسبه افزايش ولتاژ براساس ناميزان:
محاسبه افزايش ولتاژ به سبب رآكتنس سري، براساس ناميزان سازي است و به روش زير انجام مي گيرد:
(درجه ناميزان سازي – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن
سامانه خازني ايده آل:
براي تصحيح ضريب توان در بار صنعتي كنوني كه شامل هارمونيك ها و تشديد مي شود، يك سامانه اتصال خازني اساسا بايد خصوصيات زير را دارا باشد:
· ظرفيت خازني متغير بر اساس توان رآكتيو براي دوري از تغيير فركانس تشديد. اين امر انتخاب صحيح پنل هاي APFC را ممكن مي سازد. پنل APFC بايد خصوصيات زير را داشته باشد.
· حسگرها بايد به طور مداوم سطح هارمونيك هاي ولتاژ را نمايش دهد و خازن ها را تحت زير سطوح بالاتر هارمونيك ها محافظت نمايد.
· انتخاب محدوده هارمونيك هاي پنجم، هفتم، يازدهم، سيزدهم و همچنين شناخت تخريب همه هارمونيكها براي تنظيم حدود ايمن و همچنين پيش بيني تغييرات بعدي هارمونيك ها
· مونيتورينگ جريان RMS براي محافظت خازن ها تحت هر حالت تشديد
· كنترل مشخصات، براي دوري از بكارگيري ظرفيت مازاد خازني تحت حالت كم بار
انتخاب خازن با عمر بالا:
· ظرفيت اضافه بار: حداقل دو برابر جريان اسمي به طور مداوم و 350 برابر آن هنگام جريان هجومي
· قابليت پايداري در مقابل اضافه ولتاژ: بيشتر از %10 و بالاتر از ولتاژ مجاز بصورت پيوسته
· قابليت پايداري در مقابل هارمونيك ها: تضمين محدوده هاي هارمونيك هاي پنجم، هفتم، يازدهم، سيزدهم و همچنين براي محدوده هاي THD
· مدار سلفي De – Tuned براي مسدود كردن هارمونيكها (الگوي هارمونيك بار بايد قبل از تعيين درجه ناميزان سازي (De – Tuning) اندازه گيري شود)
· انتخاب سطح خازن و سطح ولتاژ براساس درجه ناميزان سازي
· دستگاه هاي كليدزني با تقليل دهنده هاي داخلي براي تقليل امواج كليد زني براي خازن هاي قدرت
اساسا اين خصوصيات با مطالعه متناسب هارمونيك هاي ولتاژ بار همراه است كه تضمين مي كند كه تاثير مخرب هارمونيك ها و تشديد از خازن ها دور شود كه بدين وسيله عمر خازن ها و كارايي كل سامانه الكتريكي را افزايش مي دهد.
نتيجه گيري:
علم به شرايط و خصوصيات خازن ها و عوامل موثر بر آنها از جمله هارمونيك ها نه تنها موجب افزايش امنيت و سلامتي و طول عمر آنها خواهد شد بلكه سبب كاهش هزينه هاي پيش بيني شده و نشده در بكارگيري انرژي الكتريكي مي شود.